

#### **Workshop Training Series**

# **Metabolic Cages:** What data can we get and how to explain them?

Yongjun Wang Ph.D.

**Director of Biomedical and Obesity Research Core** 

Nebraska Center for the Prevention of Obesity Diseases through Dietary Molecules

# Metabolic Study Resource in BORC

Metabolic cages (TSE Systems)

**XFe-24 Extracellular Flux Analyzer** 

**Vitros 250 Chemistry Analyzer** 

**Agilent GC-MSD** 

# **Diet, Exercise and Metabolism**



# **TSE PhenoMaster Metabolic Cages**

A multi-modular platform that allows researchers to carry out metabolic, behavioral and physiological analysis of mice in an automated and synchronized manner. Currently our system has 12 cages with modules to measure metabolic performance, activity, as well as feeding and drinking behavior.



# **Indirect Gas Calorimetry**

- Individual electronic mass flow controllers MFC for each cage (universal mice / rats)
- CO<sub>2</sub> sensor: Infrared spectroscopic differential
- O<sub>2</sub> sensor: Paramagnetic differential (high-speed)
- High-speed Peltier air drying unit.
- Fully Automated Gas Calibration: O<sub>2</sub> & CO<sub>2</sub>

## The Components Measured By The System

- Calorimetry
- Activity
- Drinking and feeding behavior

## **Calorimetry Results Parameter**

| Parameter | Description               | Unit                  | Remarks                  |
|-----------|---------------------------|-----------------------|--------------------------|
| Flow      | Flow                      | l/min                 |                          |
| Temp      | Temperature               | °C                    | Measurement in the box.  |
| 02        | Concentration             | %                     | Reference and per box.   |
| CO2       | Concentration             | %                     | Reference and per box.   |
| dO2       | Difference                | %                     | Reference O2 - Box O2.   |
| dCO2      | Difference                | %                     | Reference CO2 - Box CO2. |
| VO2       | O2 consumption            | ml/(kg x h) or ml/h   |                          |
| VCO2      | CO2 production            | ml/(kg x h) or ml/h   |                          |
| RER       | Respiratory Exchange Rate |                       | VCO2/VO2                 |
| Н         | Heat                      | kcal/(kg*h) or Kcal/h | Also possible in W/kg    |

## **Calorimetry Results Parameter**

| Parameter  | Description                                                                                      |
|------------|--------------------------------------------------------------------------------------------------|
| XT, YT     | Breaks X-beam total (is equivalent to XA + XF)<br>Breaks Y-beam total (is equivalent to YA + YF) |
| XF, YF     | Breaks X-beam, fine movements<br>Breaks Y-beam, fine movements                                   |
| XA, YA     | Breaks X-beam, ambulatory movements<br>Breaks Y-beam, ambulatory movements                       |
| Z          | Breaks Z-beam, rearing                                                                           |
| Z2         | Breaks Z2-beam, rearing                                                                          |
| CenT, PerT | Sum central and peripheral ambulatory and fine movement                                          |
| CenA, CenF | Central ambulatory and fine movement                                                             |
| PerA, PerF | Peripheral ambulatory and fine movement                                                          |

#### **The Major Source of Energy**



The majority of proteins is used for biosynthesis of new proteins and accounts for a small proportion of energy source in normal physiological condition.

### The Respiratory Exchange Ratio (RER)

- During oxidation of nutrients (oxidative phosphorylation) we convert food and O<sub>2</sub> into CO<sub>2</sub> and energy.
- The ratio between the amount of CO2 that is produced (VCO2) and the amount of O2 that is consumed (VO2) called the respiratory quotient (RQ) at cell level or respiratory exchange ration (RER) at body level.

RER (body)  $\sim$  RQ (cell)= VCO<sub>2</sub> / VO<sub>2</sub>

Glucose, fructose, galactose
Palmitic acid

 $C_6H_{12}O_6$   $H_{H_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{1$ 

#### **RER is A Marker of Energy Source**

**RQ** = 1 for pure carbohydrates

> RQ = 0.7 for pure lipids

| % Dietary Macronutrients | RQ (RER)             |
|--------------------------|----------------------|
| Carbonydrates / Lipids   | $mol CO_2 / mol O_2$ |
| 100 / 0                  | 1.00                 |
| 80 / 20                  | 0.88                 |
| 60 / 40                  | 0.80                 |
| 40 / 60                  | 0.76                 |
| 20 / 80                  | 0.73                 |
| 0 / 100                  | 0.71                 |

# **The Calculation of Heat**

- > 1 mol of glucose has an heat of combustion ( $\Delta$ H) -2,805 kJ, needs 6 mol oxygen.
- > 1 mol of palmitate has an heat of combustion ( $\Delta$ H) -9958 kJ needs 23 mol oxygen
- 1 liter of Oxygen = 0.044 mol
- For every liter oxygen, the body makes about 20 kJ available for metabolism (Glucose: 2805/6\*0.044=20.6, Palmitate: 9958/23\*0.044=19.1).

| Diet composition<br>carbohydrates / lipids (%) | Energy per liter oxygen<br>(kJ l O2 <sup>-1</sup> ) | Energy per liter oxygen<br>(kcal l O2 <sup>-1</sup> ) |
|------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------|
| 100 / 0                                        | 21.3                                                | 5.09                                                  |
| 80 / 20                                        | 20.6                                                | 4.92                                                  |
| 60 / 40                                        | 20.2                                                | 4.82                                                  |
| 40 / 60                                        | 20.0                                                | 4.78                                                  |
| 20 / 80                                        | 19.8                                                | 4.73                                                  |
| 0 / 100                                        | 19.7                                                | 4.71                                                  |

#### Using TSE system for metabolic cages

#### Animal information

#### Data analysis from TSE system

Mice were fed with 10% fat or 45% fat for 16 weeks

- Low fat diet-fed mice: Lard 10% of total calories
- High fat diet-fed mice: Lard 45% of total calories

#### Body weight and glucose level



#### **Statistical analysis**

The two-tailed Student's t -test were used for statistical analyses of two-group comparisons. All statistical analyses were performed using GraphPad Prism 6 (version 6.02).



Chung lab. By Yongeun Kim

## Parameters affecting energy expenditure



> Energy expenditure increases with decreasing environmental temperature

## Parameters Affecting Energy Expenditure

- > Genetic impacts
- > Circadian rhythm
- Locomotor activity
- Group size (thermal conduction)
- Food intake (thermic effect of food)
- > Body weight
- Body composition (muscles)
- Body size (Bergman's rule)
- Environmental temperature

# Thank you!